
A Novel Page Links Prediction Technique for Web
Search Sources

Aleem Ansari1, Dr. Hemlata Vasishtha2
1Ph.D. Scholar, 2Professor, Faculty of Engineering & Technology,

Shri Venkateshwara University, Gajraula, India

Abstract— Search results (Data records) retrieved from web
sources such as search engines or dynamic websites (e.g. online
shopping) are usually scattered among different web pages. Each
of these response pages displays fixed number of records ordered
by certain search criteria. These response pages usually contain
one or more hyperlinks that allows user to navigate to other
response pages. Certain applications like web data extraction
sometime needs to access only response pages that belong to
certain search criteria. However current web crawlers cannot
distinguish between related response pages and other pages from
the single web source. In this paper we have proposed a simple
and effective approach for identifying the URLs of the subsequent
response pages from a web search source. Our approach takes the
URLs of second and third response pages as input and generates
the URLs of remaining pages as output. We have employed
Myer's diff algorithm [1] for determining the differences between
parameters in the input URLs. After identifying key parameters
and their differences we construct URLs for remaining pages by
assigning proper weight to key parameters.

Keywords— Web Search Source, Crawler, Data Record Detection,
Information Extraction, Myer's diff algorithm, Web Content
Mining.

I. INTRODUCTION

Search results (Data records) retrieved from web sources
such as search engines or dynamic websites (e.g. online
shopping) are usually scattered among different web pages
[2]. Each of these response pages displays fixed number of
records ordered by certain search criteria. These response
pages usually contain one or more hyperlinks that allows
user to navigate to other response pages. Certain web data
extraction algorithms as mentioned in as mentioned in [3],
[4], [5], [6] and [7] sometime needs to access only response
pages that belongs to certain search criteria.

Fig. 1 Sample web pages displaying product information

Figure 1 shows sample response page from Amazon
website displaying list of cameras. The web page lists
information about nine different cameras. At the bottom of
the page we can see navigation links pointing to other
response pages. User navigates through these navigation
links to view remaining results (cameras) scattered on other
web pages. In this paper, we refer to such navigation links
as Subsequent Page links (SPLs).

Often different web sources display these SPLs in
different format. Figure 2 displays few sample SPL formats
used by some of the web sources. After surveying many
web sources, in this paper we classify SPLs into two
different types:

(a) Multi SPL: In this type, any response page has
several SPLs in the form of hyperlinks pointing to several
other response pages.

(b) Single SPL: In this type, any response page has only
one and or two SPL(s) in the form of hyperlink pointing to
previous and or subsequent response page(s) respectively.

Fig. 2 Multi SPL and Single SPL

The above SPLs types can be in the form of links,
buttons, images, etc

Web Data Extraction systems often need to access these
web pages for data extraction. Eventually, extracted data
might be post-processed, converted in the most convenient
structured format and stored for providing value added
services such as comparative shopping, market intelligence,
meta-querying and search ([3], [4], [5], [6], [7]).

The first step in many Web Data Extraction
systems is to access the collection of web pages from a web
source. However due to the vast nature of web sources it is
very difficult to group the web pages according to certain
criteria for e.g. separating pages containing mobile listings
from laptops listings. Currently there are no available
algorithms that can segregate between different categories
of web pages accurately.

The main aim of our work is to devise an
algorithm that will access/download only pages that belong
to certain category listing. The advantage is processing and
network bandwidth savings. This also results in elimination
of redundant and unrelated web pages thereby aiding in
efficient data extraction.

Aleem Ansari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1865-1868

www.ijcsit.com 1865

 In this paper we have presented highly effective
and efficient solution for determining subsequent response
pages. We have also implemented this algorithm. The rest
of the work is organized as follows. Section 2 describes
about the progress being done till yet in this area. Section 3
describes our algorithm in detail. Section 4 lists the results
that were found during the testing of the algorithm. Finally
section 5 concludes the shortcomings and further work that
need to be done for the betterment of the algorithm.

II. RELATED WORK

Web crawlers are relatively automated programs that
methodically scan through internet pages to create an index
of the data they are looking for. Web crawlers are also
known as web spider, web robot, bot, and automatic indexer.
When employed in search engines, web crawlers searches
the HTML document for given web site in the internet. It
stores a copy of page that has been visited by search
engines and indexing is performed.

 Focused Web Crawling [8] is intended for the
people who are interested in a small fraction of the Web.
The Focused crawlers are used to discover the set of pages
that covers certain topic. Focused Web Crawling helps in
time, network bandwidth and storage savings.

A. Fetching Web data

Web data integration systems often need to extract data
from each of its web sources distributed over the Web. In a
favourable environment, an integration system may have
special agreement with its web sources on how to transfer
data or utilizing Web Services. If the number of web
sources are less and stable, an integration system could
have customized programs for different web sources to
fetch data. However, when an integration system needs to
manage hundreds of web sources, especially when they are
autonomous and heterogeneous and changes their interfaces
frequently in unpredictable way; highly automated,
adaptive, and robust methods are needed for the integration
of the fetched data.

 For automatic processing, the integration system
should have the capability to automatically discover search
interfaces, send queries and fetch the response pages.
However, it is not clear how an integrator can fetch data
from subsequent response pages. In this paper, we assume
that we are able to connect to a Web search source’s
interface, submit required queries, and fetch the first
response page returned.

B. Wrapper Generations

Wrapper generation is a data extraction enabling process
that has been employed extensively in the area of
Structured Data Extraction [10], [11]. If we can identify
SPLs and fetch the corresponding pages, wrappers can be
generated to process these pages to extract the records
contained in them. In the context of this paper, a wrapper is
used to extract a specified response page from a Web search
source rather than the result records contained in a
particular response page.

III. SUBSEQUENT RESPONSE PAGE PREDICTION

We first define few terms that we use for the purpose of
simplifying the description of our approach:

Definition 1: Incorrect Query: When a search query q is
submitted to a Web search source S, resultant records R are
scattered into set of P pages with each page p containing C
resultant records (such that C>0). Query q is an Incorrect
Query to S when R = 0 and P = 0

Definition 2: Optimal Query: When a search query q is
submitted to a Web search source S, resultant records R are
scattered into set of P pages with each page p containing C
resultant records (such that C>0). Query q is an Optimal
Query to S when R > C and P > 1.

Definition 3: Correct Response Page: The response pages
P returned for optimal query is called as Correct Response
Page (CRP).

Definition 4: Incorrect Response Pages: The response
pages P returned for an incorrect query is called as
Incorrect Response Page (IRP).

The proposed algorithm takes URLs of second and third
pages of a Web search source as input and returns list of
candidate SPLs L such that each SPL in L maps to one of
the URLs of pages in P.

A. Probe Query Generation

First, we need to generate an optimal query
corresponding to the input Web source. In our running
example, ‘datamining’ is the optimal query qi to web source
google.com. Thus the URLs (SPLs) for the first three pages
are as follows:
https://www.google.com/search?q=datamining
https://www.google.com/search?q=datamining&start=10
https://www.google.com/search?q=datamining&start=20

B. Observations

Generally data extraction algorithms like [2], [3], [4], [5]
and [12] assumes that the data to be extracted from the Web
pages follows few regularities when displayed (e.g., similar
layout, similar record structure, similar tag strings, etc.).
Similarly, we can observe that URLs of SPLs generated by
a Web source in response to a query also follow some
regularity. The reason is that these response pages are
generated by dynamic programs on the server side whose
results depend on the supplied query parameters.

 When we submit a query to a web search source,
the query appears in the URLs of the results as name value
pair. The name value pair with query as its value is called
as query parameter. For example when we submit Search
another query say ‘webmining’ to Google we get URLs(or
SPLs) for the first three pages as follows:
https://www.google.com/search?q= webmining
https://www.google.com/search?q= webmining &start=10
https://www.google.com/search?q= webmining &start=20

 In above cases we can see that the search query
appears in the URLs (SPLs) with query parameter q having
value as webmining.

 In every SPL we have at least one parameter that is
used to distinguish SPLs from one another and hence
subsequent pages. Such parameters are called page
parameter(s).The two SPLs for a single query to a web

Aleem Ansari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1865-1868

www.ijcsit.com 1866

search source only differ in page parameter(s). If we ignore
page parameter(s), then all the SPLs will be the same. Thus
by appropriately changing the values of page parameter(s),
we can fetch the desired response pages from the web
search source. Hence the main goal is to identify page
parameters in the SPLs and difference δ between two
successive pages parameter(s). Once identified, we simply
increment the page parameter(s) by the difference δ to fetch
the required page. For previous example we have delta =10

 Thus after knowing the page parameter for second
and third pages p2 and p3 respectively we can fetch the
page number p using the formula:

https://www.google.com/search?q=webmining&start=S
such that S=((p2 + (p3 – p2))*p).

Thus after constructing SPLs for required pages we can

easily fetch them for data extraction or similar purpose.

C. Pseudo code for Page Parameter Normalization

1) Input URLs of second and third page say URL2
and URL3.

2) Find list of differences between the URL2 and
URL3 using Myer's diff algorithm. where each item
in the list is in the one of the following format:

=(str) means string str is common in both
the URLs.
-(str) means string str is deleted from the
first URL i.e. URL2.
+(str) means string str is added to the first
URL i.e. URL2.

3) If str is deleted from URL2, get the position of str
in URL2

4) Find the digits that are near str (both left side and
right side) in URL2. Let’s call this strDigit2.

5) Find the corresponding digits that are near position
of str (both left side and right side) in URL3. Let’s
call this strDigit3.

6) Replace strDigit2 and strDigit3 with a unique
string every time say myparam1, myparam2,
myparam3 and so on.

7) Save data in the format myparam1, strDigit2,
strDigit3 in the list say paralist.

8) Repeat through step 2 until there is no difference
between URL2 and URL3.

Once we normalize the page parameters using the page
parameter normalization technique, both URL2 and URL3
becomes identical. The next step is to predict SPL for
required page p by appropriately replacing page parameter
values.

D. Pseudo code for Subsequent Page Link Prediction

1) To get the URL for page number p, create copy of
the URL2 say newURL.

2) Get the first item from the list paralist.
3) Get parameter name say myparam1, strDigit2 and

strDigit3 from the list item.
4) Replace myparam1 in the newURL with (strDigit2

+ (strDigit3 – strDigit2))*p.
5) Repeat from step 2 with remaining items in the list

i.e. myparam2, myparam3 and so on.

6) Now the newURL is the final URL for page no p.

IV. EXPERIMENT

The proposed work is implemented using java. To
analyse the validity and performance of our algorithm we
made it to pass through various set of web pages. During
our experiments we came across response web pages of
different categories.

A. Response page with no SPL

In this category the web search source returns few
records for viewing purpose. The remaining records are
displayed dynamically using AJAX or JavaScript based on
user’s interactions on the same page. Our technique is not
applicable to this category since there is no SPL.

B. Response page with Numeric Page Parameter(s)

In this category more than one response pages are
returned by web search source. Each response page contains
SPL for navigating to other pages. However the page
parameters have numeric values. Our technique achieves
100% accuracy for response pages in this category.

C. Response page with Non-Numeric Page Parameter(s)

In this category the more than one response pages are
returned by web search source. Each response page contains
SPL for navigating to other pages. However the page
parameters have non-numeric values. Our technique is not
applicable to this category since it cannot identify the
difference between the page parameters accurately.

D. Execution Time

Execution time: Average time taken for our approach is
O(1) to fetch the required page. Once a data structure is
created for a Web source after page parameter
normalization, any specified response page can be fetched
from that source in a fraction of a second.

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a simple yet novel technique
for automatically fetching desired response page from Web
search source. It is a vital task for information integration
systems since search results retrieved from web sources are
usually scattered among different web pages. The proposed
first normalizes the page links using Myer's diff algorithm
and then fetches the required response pages. The algorithm
works only for SPLs with numeric page parameters. Since
most of the websites use SPLs with numeric page
parameters this algorithm provide great benefits to various
Knowledge Discovery Applications such as comparative
study of products or services from various companies,
smart shopping, etc.

 We also observed the scenarios of page parameters
with non-numeric values. Our technique is not applicable to
this category since it cannot identify the difference between
the page parameters accurately The future work would be
normalization of page links with non-numeric page
parameter(s).Finally testing algorithm on more and more
web sources will be continuous process to fine tune it for
any corner cases.

Aleem Ansari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1865-1868

www.ijcsit.com 1867

REFERENCES
[1] Myers, Eugene W. "AnO (ND) difference algorithm and its

variations." Algorithmica 1.1-4 (1986): 251-266.
[2] Novotny, Róbert, Peter Vojtas, and Dušan Maruscak. "Information

Extraction from Web Pages." Proceedings of the 2009
IEEE/WIC/ACM International Joint Conference on Web
Intelligence and Intelligent Agent Technology-Volume 03. IEEE
Computer Society, 2009.

[3] Laender, Alberto HF, et al. "A brief survey of web data extraction
tools." ACM Sigmod Record 31.2 (2002): 84-93.

[4] Liu, Bing, and Yanhong Zhai. "NET–a system for extracting web
data from flat and nested data records." Web Information Systems
Engineering–WISE 2005. Springer Berlin Heidelberg, 2005. 487-
495.

[5] Ye, Shiren, and T-S. Chua. "Learning object models from
semistructured web documents." Knowledge and Data Engineering,
IEEE Transactions on 18.3 (2006): 334-349.

[6] Baumgartner, Robert, Georg Gottlob, and Marcus Herzog. "Scalable
web data extraction for online market intelligence." Proceedings of
the VLDB Endowment 2.2 (2009): 512-1523.

[7] Kayed, Mohammed, and Chia Hui Chang. "FiVaTech: Page-level
web data extraction from template pages." Knowledge and Data
Engineering, IEEE Transactions on 22.2 (2010): 249-263.

[8] Chakrabarti, Soumen, Martin Van den Berg, and Byron Dom.
"Focused crawling: a new approach to topic-specific Web resource
discovery." Computer Networks 31.11 (1999): 1623-1640.

[9] Liu, Hongyu, and Evangelos Milios. " Probabilistic Models for
Focussed Web Crawling." Computational Intelligence 28.3 (2012):
289-328.

[10] Chakrabarti, S . Mining the Web: Discovering Knowledge from
Hypertext Data. Morgan Kaufmann Publishers, 2002.

[11] Chang, Chia Hui, et al. "A survey of web information extraction
systems." Knowledge and Data Engineering, IEEE Transactions on
18.10 (2006): 1411-1428.

[12] Zhai, Yanhong, and Bing Liu. "Web data extraction based on partial
tree alignment." Proceedings of the 14th international conference on
World Wide Web. ACM, 2005.

Aleem Ansari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1865-1868

www.ijcsit.com 1868

